Copied to
clipboard

G = C2×C92.C3order 486 = 2·35

Direct product of C2 and C92.C3

direct product, metabelian, nilpotent (class 4), monomial, 3-elementary

Aliases: C2×C92.C3, C92.3C6, (C9×C18).2C3, (C3×C6).3He3, C32.3(C2×He3), (C3×C18).18C32, C3.He3.4C6, C6.8(He3⋊C3), (C3×C9).19(C3×C6), C3.8(C2×He3⋊C3), (C2×C3.He3).1C3, SmallGroup(486,87)

Series: Derived Chief Lower central Upper central

C1C3×C9 — C2×C92.C3
C1C3C32C3×C9C92C92.C3 — C2×C92.C3
C1C3C32C3×C9 — C2×C92.C3
C1C6C3×C6C3×C18 — C2×C92.C3

Generators and relations for C2×C92.C3
 G = < a,b,c,d | a2=b9=c9=1, d3=c6, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b7c-1, dcd-1=b3c >

3C3
3C6
3C9
3C9
3C9
3C9
9C9
9C9
9C9
3C18
3C18
3C18
3C18
9C18
9C18
9C18
33- 1+2
3C3×C9
33- 1+2
33- 1+2
3C2×3- 1+2
3C3×C18
3C2×3- 1+2
3C2×3- 1+2

Smallest permutation representation of C2×C92.C3
On 54 points
Generators in S54
(1 14)(2 15)(3 13)(4 17)(5 18)(6 16)(7 10)(8 11)(9 12)(19 46)(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)(28 44)(29 45)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)(36 43)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 12 18 3 11 17 2 10 16)(4 15 7 6 14 9 5 13 8)(19 21 23 25 27 20 22 24 26)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 48 50 52 54 47 49 51 53)
(1 52 38 2 46 44 3 49 41)(4 26 33 5 20 30 6 23 36)(7 21 32 8 24 29 9 27 35)(10 48 39 11 51 45 12 54 42)(13 22 34 14 25 31 15 19 28)(16 50 43 17 53 40 18 47 37)

G:=sub<Sym(54)| (1,14)(2,15)(3,13)(4,17)(5,18)(6,16)(7,10)(8,11)(9,12)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,44)(29,45)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(36,43), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,12,18,3,11,17,2,10,16)(4,15,7,6,14,9,5,13,8)(19,21,23,25,27,20,22,24,26)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,48,50,52,54,47,49,51,53), (1,52,38,2,46,44,3,49,41)(4,26,33,5,20,30,6,23,36)(7,21,32,8,24,29,9,27,35)(10,48,39,11,51,45,12,54,42)(13,22,34,14,25,31,15,19,28)(16,50,43,17,53,40,18,47,37)>;

G:=Group( (1,14)(2,15)(3,13)(4,17)(5,18)(6,16)(7,10)(8,11)(9,12)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,44)(29,45)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(36,43), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,12,18,3,11,17,2,10,16)(4,15,7,6,14,9,5,13,8)(19,21,23,25,27,20,22,24,26)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,48,50,52,54,47,49,51,53), (1,52,38,2,46,44,3,49,41)(4,26,33,5,20,30,6,23,36)(7,21,32,8,24,29,9,27,35)(10,48,39,11,51,45,12,54,42)(13,22,34,14,25,31,15,19,28)(16,50,43,17,53,40,18,47,37) );

G=PermutationGroup([[(1,14),(2,15),(3,13),(4,17),(5,18),(6,16),(7,10),(8,11),(9,12),(19,46),(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54),(28,44),(29,45),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42),(36,43)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,12,18,3,11,17,2,10,16),(4,15,7,6,14,9,5,13,8),(19,21,23,25,27,20,22,24,26),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,48,50,52,54,47,49,51,53)], [(1,52,38,2,46,44,3,49,41),(4,26,33,5,20,30,6,23,36),(7,21,32,8,24,29,9,27,35),(10,48,39,11,51,45,12,54,42),(13,22,34,14,25,31,15,19,28),(16,50,43,17,53,40,18,47,37)]])

70 conjugacy classes

class 1  2 3A3B3C3D6A6B6C6D9A···9X9Y···9AD18A···18X18Y···18AD
order12333366669···99···918···1818···18
size11113311333···327···273···327···27

70 irreducible representations

dim111111333333
type++
imageC1C2C3C3C6C6He3C2×He3He3⋊C3C2×He3⋊C3C92.C3C2×C92.C3
kernelC2×C92.C3C92.C3C9×C18C2×C3.He3C92C3.He3C3×C6C32C6C3C2C1
# reps11262622661818

Matrix representation of C2×C92.C3 in GL4(𝔽19) generated by

18000
0100
0010
0001
,
11000
01100
0040
00016
,
1000
0900
0040
0009
,
11000
0010
0001
01100
G:=sub<GL(4,GF(19))| [18,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[11,0,0,0,0,11,0,0,0,0,4,0,0,0,0,16],[1,0,0,0,0,9,0,0,0,0,4,0,0,0,0,9],[11,0,0,0,0,0,0,11,0,1,0,0,0,0,1,0] >;

C2×C92.C3 in GAP, Magma, Sage, TeX

C_2\times C_9^2.C_3
% in TeX

G:=Group("C2xC9^2.C3");
// GroupNames label

G:=SmallGroup(486,87);
// by ID

G=gap.SmallGroup(486,87);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,979,224,824,873,453,3250]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^9=c^9=1,d^3=c^6,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^7*c^-1,d*c*d^-1=b^3*c>;
// generators/relations

Export

Subgroup lattice of C2×C92.C3 in TeX

׿
×
𝔽